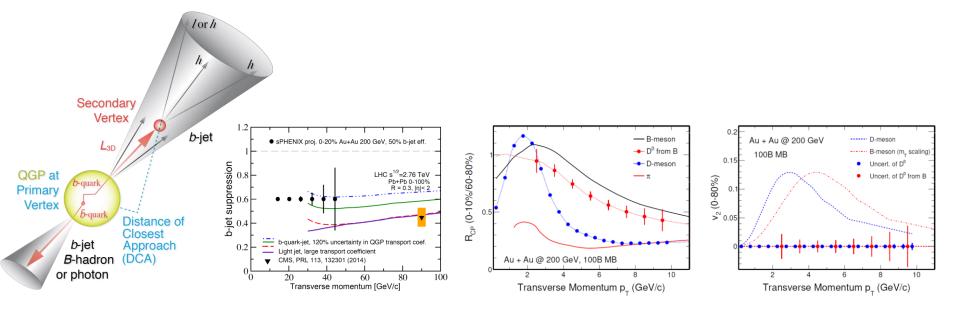
HF TG status and planned simulations for MVTX review

QGP at Primary Vertex

Ming Liu (LANL)
Jin Huang (BNL)
Mike McCumber (LANL)

lorh

Distance of Closest

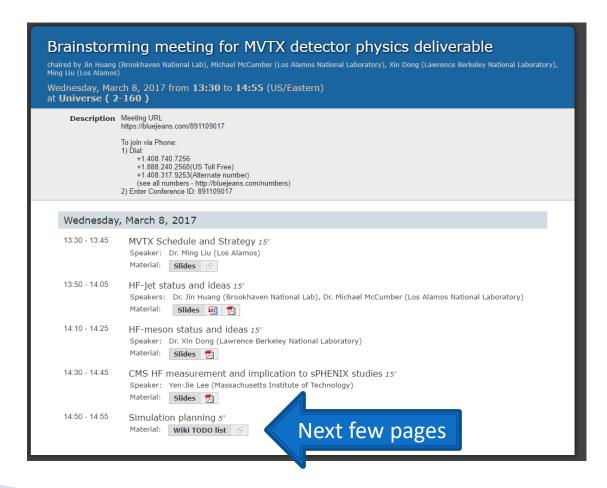


MVTX Cost & Schedule and R&D

- A master cost & schedule project file being updated
 - LBNL manpower and technical resources, fixed cost etc.
 - Will get similar updates from MIT and other institutions
 - Prepare for BNL review (physics + cost & schedule)
 - To update MVTX proposal later this year
- MAPS R&D @LANL
 - Received 5 MAPS chips + high-speed readout adaptors to build a telescope
 - Setting up "MOSAIC" high-speed readout test bench @LANL
 - Two RUv1 boards available ~ April/May, "CRU" w/ Altera evaluation borads
 - In process of obtaining FELIX from BNL
- MAPS Readout workfest scheduled @UT-Auston, 4/19-20
 - UT-Austin, LANL, LBNL, BNL experts

HF-topical group

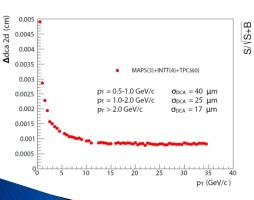
- ▶ HF in sPHENIX: in particular B-meson and b-jets, provide differentiating sensitivity to collision VS radiative energy loss, access to HQ transport parameter of QGP, total cross section .
 - B-meson: access down to zero pT, max sensitivity to HQ mass effect
 - b-Jet: less dependence on FF complication, probing parton energy and higher-scale
- ▶ Topical group formed in Apr 2016 focusing on establishing b-jet program. Many progresses thanks to diligent team of developers. Delivered first Geant4-based b-jet tagging performance and expanding into correlation studies.
- In the new era of MVTX program, aim to expand the program in HF-meson program as initiated by LBNL and LANL groups, and serve the detector consortium of MVTX
 - Topical group wiki: https://wiki.bnl.gov/sPHENIX/index.php/Heavy Flavor Topical Group

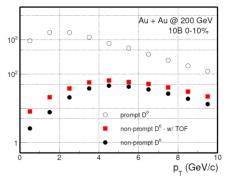


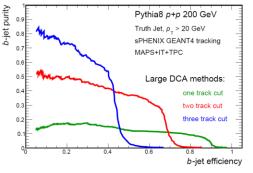
Brainstorming meeting, Mar 8

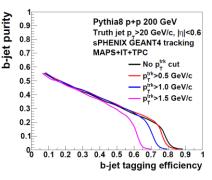
- https://indico.bnl.gov/conferenceDisplay.py?confId=2932
- About 20 sPHENIX collaborator and Ivan Vitev called in the discussion

Current development planning assumed two time-scale:

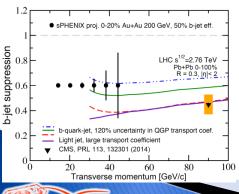

- Director's review Apr/May
- DOE review past summer

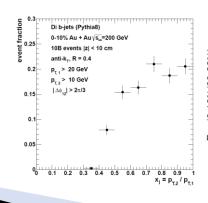


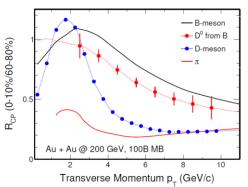


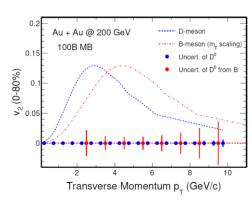

Technical performances:

- Realistic implementation in Geant4
 - In verification: implement ladder structure in simulation Tony F., Gaku M.
 - By Apr (Done): digitization of MAPS detector Tony F.
 - By end Apr: Update tracking performance plots for MAPS, DCA and dp/p resolutiosn -Tony F.
 - By summer (?): complete the pile-up simulation framework Mike M., Yorito Y.
- b-jet tagging algorithm
 - By summer, help needed: Investigating full-detector fast simulation for b-jet simulation. Look into general packages e.g. <u>DELPHES</u>.
 - By summer: Full calorimetry simulation with secondary vertexing tagger Sanghoon L.
 - **By summer**: Full calorimetry simulation with high-DCA track counting Haiwang Y.





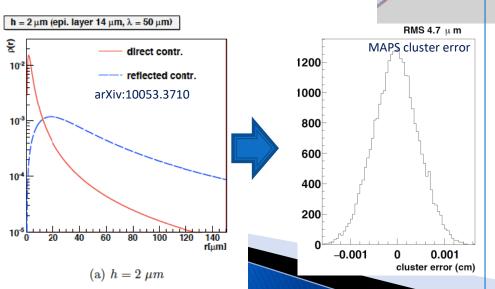


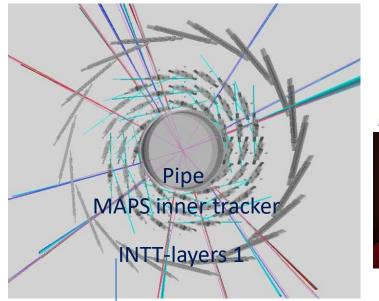

Physics performances:

- Update non-prompt D meson performance projection
 - Deliverable by end Apr :update the Rcp and v2 plot with more realistic simulations for MB and peripheral collisions - Xin D., Xiaolong C.
- Explore complimentary B-hadron channels beyond non-prompt-D
 - By summer: Fast simulation for exclusive channels, B->J/Psi K, B->D pi Xin D., Xiaolong C.
 - By summer, help needed: B->non-prompt J/Psi->e⁺/e⁻ and p+p triggering
- Inclusive b-jet R_{AA}
 - By Apr (?): Update theory curve to RHIC energy Cesar da S. contact Vitev group
 - Deliverable by end Apr: Update theory curve for RHIC energy for R_{ΔΔ} plot
- di-b-jet asymmetry
 - By Apr: Extract di-jet purity from Geant4 simulation Haiwang Y.
 - Deliverable by end Apr: Apply di-jet purity to projection Darren M., Haiwang Y.
- b-jet-non-prompt-D asymmetry:
 - **Deliverable by end Apr**: Produce uncertainty projection in fast simulation Xuan L.

Additional topics help (always) wanted

- **HF-hadron chemistry:** e.g. high stat. Λ_c , to study HQ hadronization
- ▶ **HF-meson correlations**, e.g. D-D_bar azimuthal correlations, to enhance sensitivity to HQ-medium interaction; enhance M/pT ratio scale comparing to D-b-jet correlation.
- Explore b-jet substructure tools:
 - Exercise jet-grooming algorithm, FF. in collaboration with Jet Structure group
 - Tagging gluon splitting via multi-decay vertex in inclusive b-jets.
- Explore Charmed-quark jet:
 - charm fragmentation, completes mass hierarchy. Select D meson formed late in formation
 - Try out prompt-D tagger (ALI-PREL-117896) and Corrected Secondary vertex (arXiv:1612.08972)
- Explore tagged D-meson in correlation with opposite hard structure
 - Tagging initial c-quark kinematics with correlations, including D-meson jet correlation and D-meson photon correlation
 - Study D-FF and formation of D-meson
- Further b-jet tagging developments
 - Try different strategy: Soft-lepton tagging
 - Optimize analysis methods: likelihood analysis and machine learning tool
- Triggering of B-mesons in p+p collisions
 - D->J/Psi ->e+/e-, EMCal trigger. Explore work by Sasha L.
 - D meson calorimetry trigger, turn on.
 - Large DCA triggers?

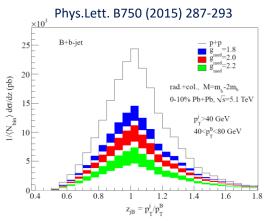



Progresses since brain storming meeting – modeling of silicon trackers

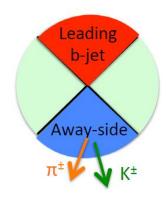
Tony Frawley:

Approximation of MAPS diffusion parametrization [arXiv:10053.3710] Used in MAPS digitization, Reproduced ALICE claim of 5 um res.

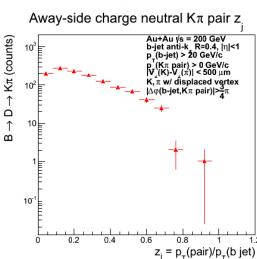
https://github.com/sPHENIX-Collaboration/coresoftware/pull/255



Gaku Mitsuka:

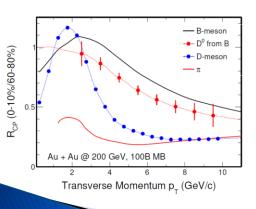

- Built INTT geometry model
- Improving estimation of material budget
- Debugging rφ cluster distribution

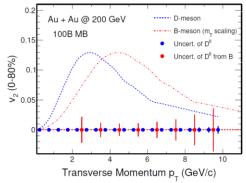
Progresses since brain storming meeting Non-prompt D-meson correlations

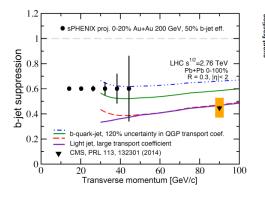

- Xuan Li (LANL) also started investigation of correlation of b-jet in correlation of a non-prompt D₀-meson (→pi + K)
- Goal: tag initial quark energy + vector for non-prompt D measurements, probe b-quark energy loss and fragmentation; access to lower z_i cut-off comparing to di-b-jets correlation; help purity of bquark-jet tagging
- Producing fast simulation results for pre-proposal

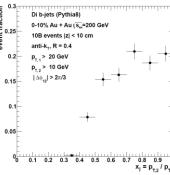
Away-side charge neutral K π pair z in the pair z in the

Updates in simulation meetings:

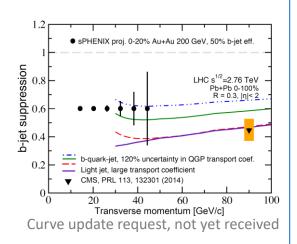

 $\underline{https://indico.bnl.gov/conferenceDisplay.py?confld=2684}$

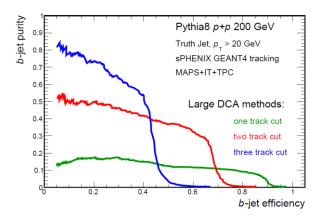

Preliminary study

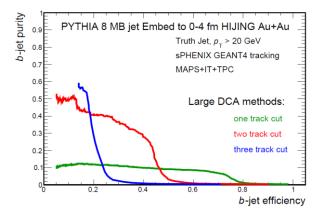


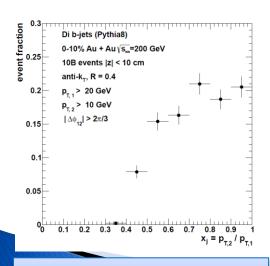

Path forward: summary

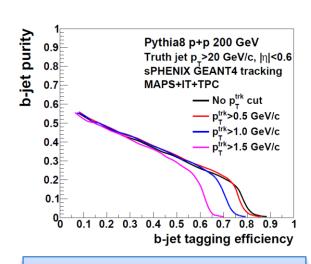
- Apr review/preproposal:
 Solidifying results and studies presented in Feb-2017 pre-proposal
- Summer review/full proposal:
 - Expansion of selected topics: more realistic simulation, exclusive B-meson reconstruction
 - Addressing BNL-charged review comments
 - Many more HF capabilities need your help to develop
- Expect workfest around time of May collaboration meeting

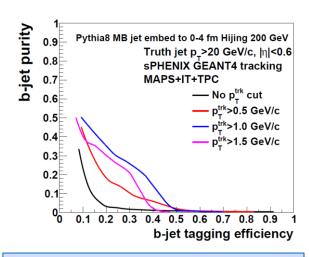


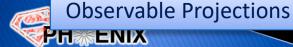

Extra information






Delivered plots – HF-jet for Feb-2017 MAPS pre-proposal





B-jet tagging in p+p

B-jet tagging in 10%C Au+Au

HF Topical group organization

Co-conveners

- Jin Huang (Brookhaven National Lab) <ihuang@bnl.gov>
- Mike McCumber (Los Alamos National Lab) <mccumber@bnl.gov>

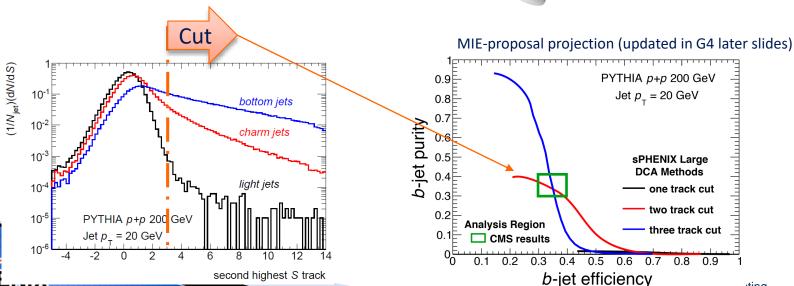
- We are very fortune to have a diligent team working on a wide spectrum of high-priority development
 - More manpower are always welcomed and needed!

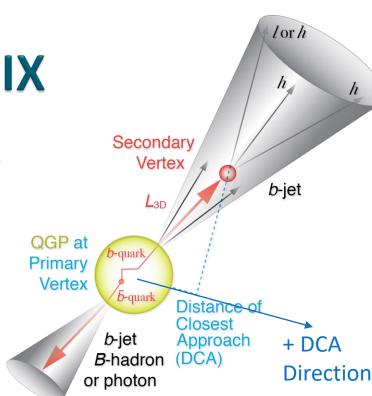
Communication:

- Discussion email list: https://lists.bnl.gov/mailman/listinfo/sphenix-hf-jets-l
- Wiki page under construction: https://wiki.bnl.gov/sPHENIX/index.php/Heavy Flavor Topical Group

Meetings/Events

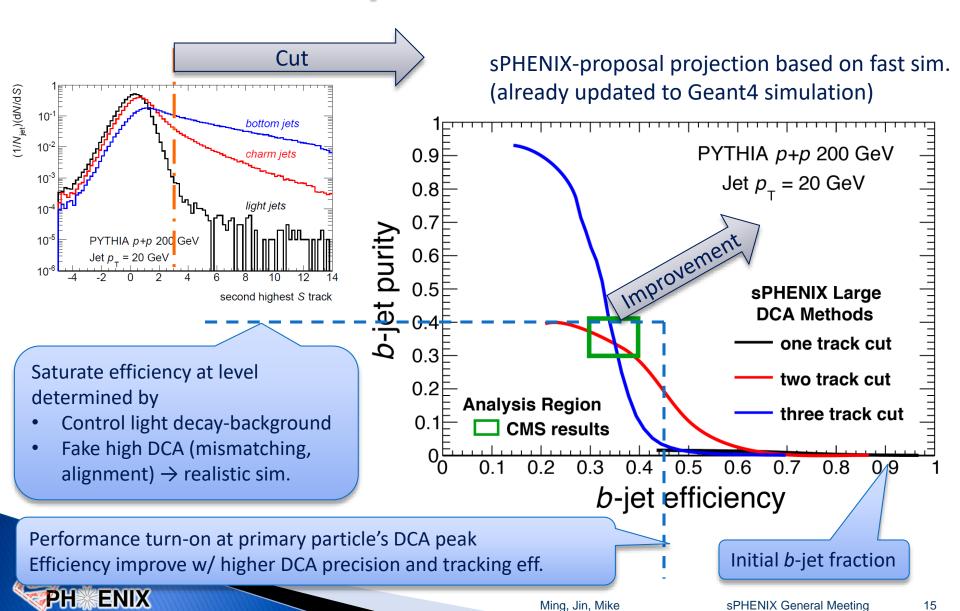
- Use weekly simulation meetings for updates, as many high-priority tasks involve software developments with tracking detector designs https://indico.bnl.gov/categoryDisplay.py?categId=88
- Goal oriented irregular events:
 - MVTX brainstorming meeting, Mar 8
 - MAPS+HF-jet joint workfests, e.g. Jan 5-7 2017 @ Santa Fe
 - Pre-collaboration meeting work-fest on May 16-17, 2016
 - Initial TG meeting on Apr 22, 2016





Tagging b-jets in sPHENIX

Exploring three leading methods for sPHENIX *b*-jets identification and crosscheck


- Multiple large DCA tracks
- Secondary vertex and kinematic fits
- B-meson tagging via semi-leptonic decay or direct invariant mass reconstruction
 - Need volunteer

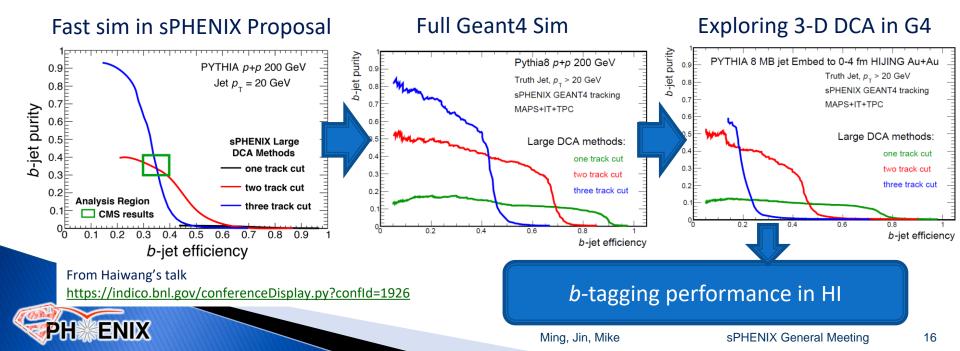
ting

What affects performance curves

Past activities:

b-jet tagging - High DCA track counting

Short history


- Dennis and Haiwang implemented track counting tagger in the full Geant4 simulation
- Haiwang produced projection plot in Geant4 simulation.
- Systematically validating the Geant4-based track fit procedure, in order to optimize 3-D DCA and likelihood

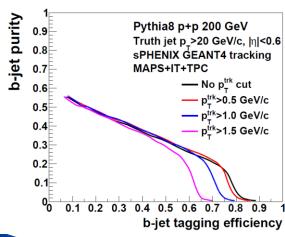
Next

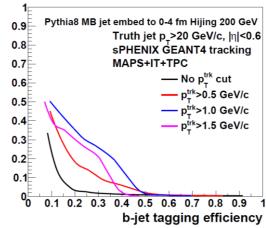
- Reevaluate in HI background with HIJING embedding
- Optimizing cuts to suppress fake off-vertex tracks

Past activities:

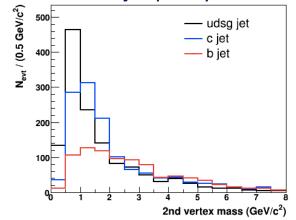
b-jet tagging – Secondary vertex

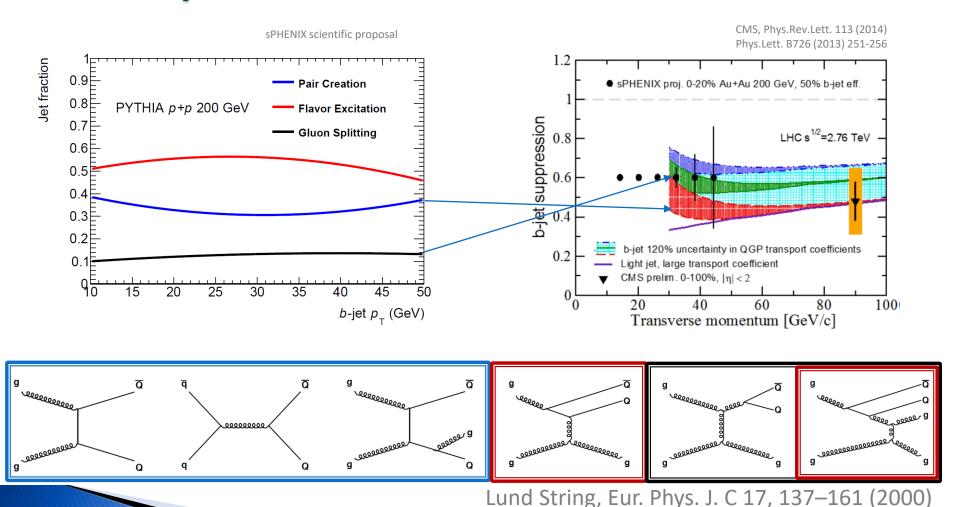
Short history


- Haiwang developed new Kalman filter (GenFit2) with vertex finder integration (RAVE)
- Sanghoon implemented Secondary vertex finder in jet
- p+p performance plot used in tracking review


Next:

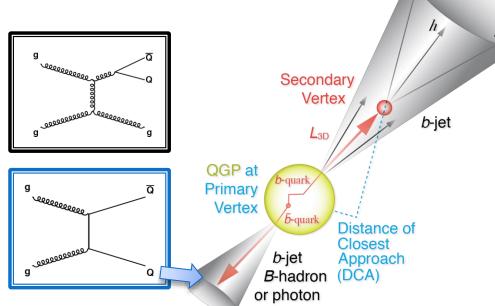
- Fixing a refitting inefficiency issue (further improve p+p results)
- Reevaluate in HI background with HIJING embedding


Secondary vertex *b*-tagger

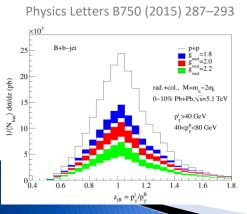

From Sanghoon's talk https://indico.bnl.gov/conferenceDisplay.py?confld=1928

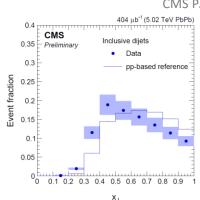
Secondary vertex kinematics fits Data driven *b*-jet purity estimation

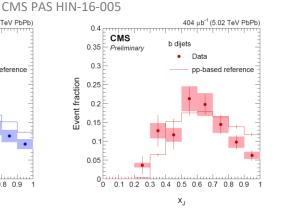
Ming, Jin, Mike

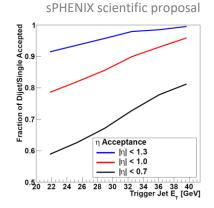

An vulnerability (opportunity) of HF-probes

b-quark jet selection:b-jet correlation

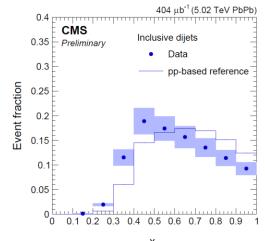

- Event topology to select b-quark jet
 - b-jet in correlation with opposite-going B-hadron, b-jet and photon
- sPHENIX provides good acceptance on b-di-jet and b-jet – non-prompt-D correlations
- Helps on purity of jet and b-tagging too
- Near term goals: fast-sim projections

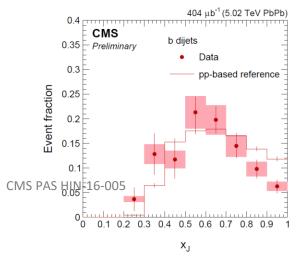


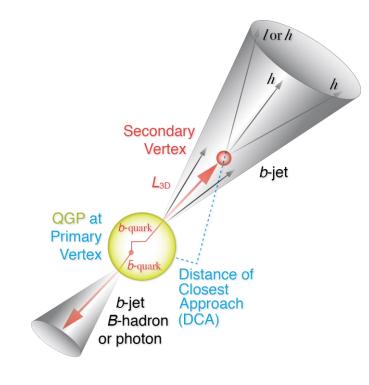

b-jet + B-hadron, model


b di-jet, CMS 2016

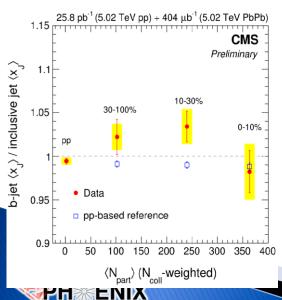
MS 2016 *di*-jet acceptance in sPHENIX



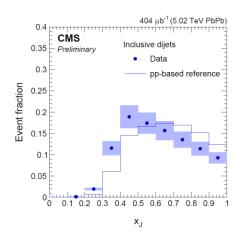


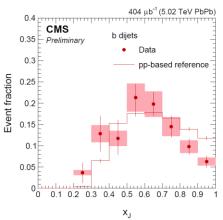


lorh


New studies for Di-b-jet asymmetry With reference to recent CMS TN

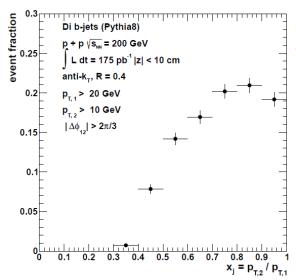
CMS-HIN-16-005

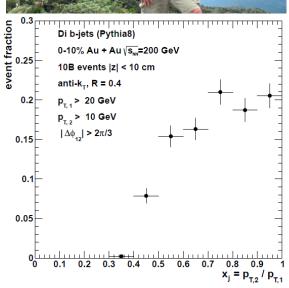

sPHENIX fast sim.


Work started in Jan-2017 workfest sPHENIX di-bjet asymmetry,

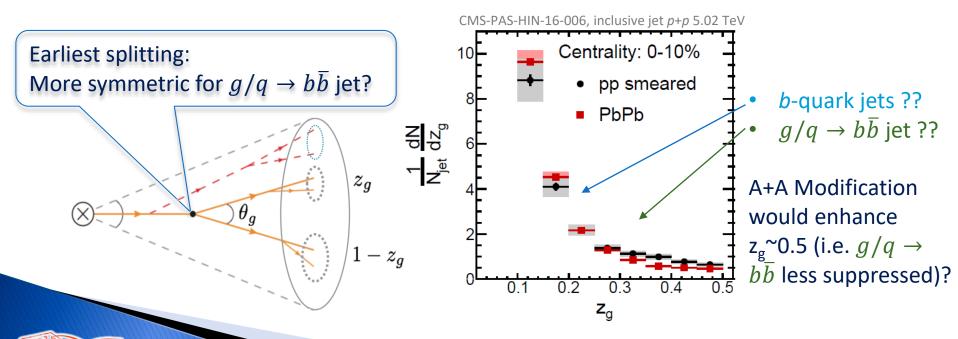
- Darren McGlinchey (UCB)

Di-b-jet asymmetry: sPHENIX projection



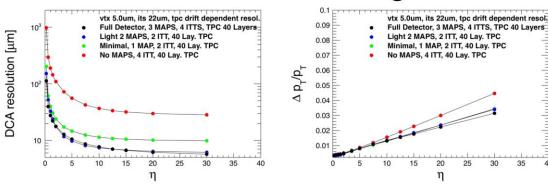

CMS-HIN-16-005, also Yen-Jie's talk July 2016

On-going sPHENIX projection


- By Darren McGlinchey (UCB)
- Pythia8 (HardQCDBBar)
- Fast sim. (truth jets)
- Assuming di-b-jet tagging perf.
 - Efficiency 50%
 - High purity (100%)
- $R_{AA} = 0.6$ assumed
- sPHENIX proposal lumi. (100B MB)
 - For p + p use integrated luminosity of $\int \mathcal{L}_{pp} dt = 175 \text{ pb}^{-1}$
 - For 0-10% Au+Au use n+n equivilent luminosity of $\int \mathcal{L}_{nn} dt = N_{evt}^{AuAu} * \langle N_{coll} \rangle / \sigma_{nn} = 10 \text{B} \times 962/42 \text{mb} = 229 \text{ pb}^{-1}$

More ideas on *b*-quark jet selection? Jet structure tools

- Jet structure tool developed in HEP adapted in HI field
- ▶ Jet grooming observable z_g to separate b-quark jet and $g/q \rightarrow b\bar{b}$ jet?
- Mid-term goals: in collaborate with JS TG in developing grooming tools – volunteer welcomed!



From Christof R.

https://indico.bnl.gov/conferenceDispla

y.py?confld=2683

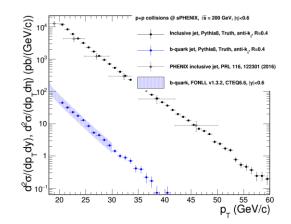
Alternate Detector Configurations

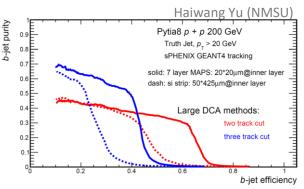
- Alternate detector configurations
 - Default -> 3 MAPS Layers, 4 ITT Layers, 40 Layers TPC
 - Light-> 2 MAPS Layers, 2 ITT Layers to save material budget
 - Slight performance advantage below 10GeV due to lower material budget
 - Minimal -> 1 Maps Layer, 2 ITT Layers, 40 Layers TPC
 - Significant performance decrease (remember 95% hit efficiency per layer)
 - No Maps
 - · Likely death sentence for Heavy Flavor program...

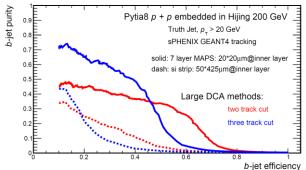
Christof Roland

8

sPhenix Simulation Meeting Mar 07 2016

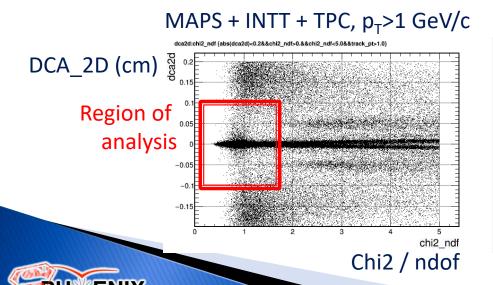


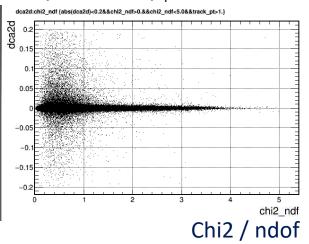

Detector requirement on MAPS/MVTX


- Caveats: there are trade-offs between tail/efficiency/DCA. Important final check is b-jet tagging performance working point: reaching 40% efficiency and 40% purity.
- Low fake high-DCA tail background
 - *b*-jets are rare (0.1%-1%) object identified via displaced vertex, therefore sensitive to rare large-DCA fake track background.
 - The working point of B-jet tagger is few-sigma above DCA peak, and
 - Possible specification: true large DCA track/fake large DCA track > 1:1 1:few for DCA tail integrated from 2-sigma to 1mm
- Tracking efficiency
 - Efficiency for multi-track tagging algorithm is sensitive to (tracking efficiency)^N
 - Possible specification: Require 60% (HFT KPP) 75% (HFT UPP) single track efficiency p_T>1 GeV/c

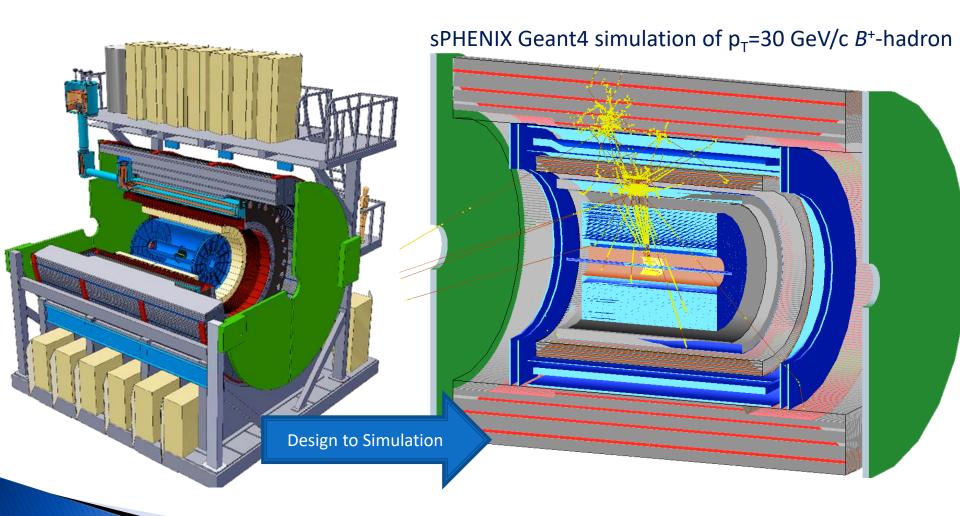
DCA

- B-jet DCA requirement is relatively moderate
- Requirement: DCA<100 um @ p_T>4 GeV/c (sPHENIX proposal)
- DAQ output event rate
 - Statistical limited measurement
 - B-jets are jet-structure study based on inclusive jets, require large jetsample rate
 - Requirement: 15 kHz trigger rate to match sPHENIX DAQ

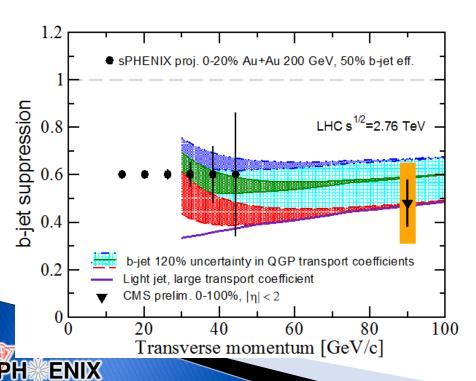


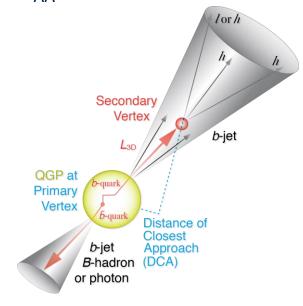

b-jet tagging – High DCA track counting Update in HIJING embedding:

- Haiwang Yu (NMSU) initiated the study by embedding pythia-8 MB jets into 0-4 fm HIJING background, then go through full tracking Geant4 simulation and reconstruction


- Two configuration in study
 - Cylindrically modelled MAPS + INTT + TPC (target configuration)
 - 7-layers of MAPS (Same MAPS inner tracker + MAPS outer tracker) as reference of ultimate tracking configuration of very low fake tracking rate but same physics background.

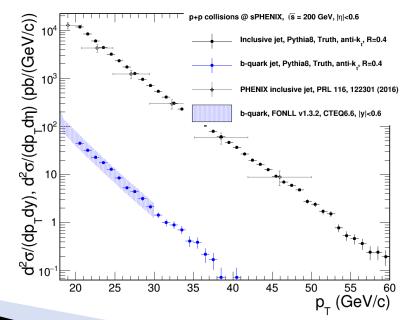
7-layer MAPS, $p_T>1$ GeV/c


b-jet simulations, drawing to Geant4



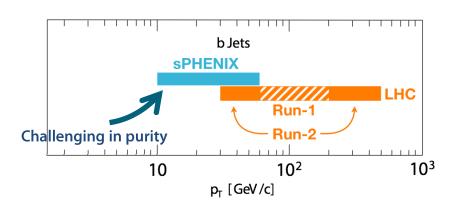
Luminosity counting

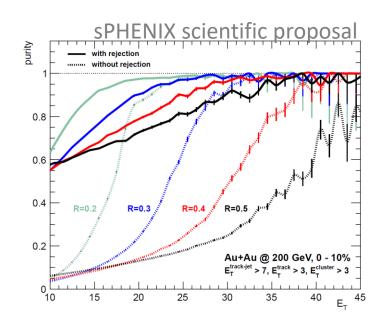
- Current RAA plot assumed 200B MB Au+Au in |z|<10cm</p>
 - 100B MB Au+Au in |z|<10cm assumed for sPHENIX proposal
 - 200B MB Au+Au in |z|<10cm following updated CAD projection
 - Will follow the final luminosity number determined by collaboration for QM17 -Gunther
- ▶ For MAPS proposal, we need updated model R_{AA} for RHIC energy


Simulation resources

- Currently we separate jet and b-tagging simulations to help speed up simulation. Need to verify factorization in the next stage
- Simulation setup used in analysis:
 - Tracking simulation in p+p in MAPS+IT+TPC (few minute / event)
 - Tracking simulation in HIJING + embedding for 7-layer MAPS (few minute / event, used for initial tunings) and for MAPS+IT+TPC (1hour / event, use for performance plots)
- In developments
 - Silicon detectors in ladder geometry <- make available soon?
 - Pile up simulation <- make available soon?
 - TPC distortion corrections

Jet flavor definition tools


- Unifying truth definition and jet sample generations
 - Based on Dennis' work defining a truth tagging module run on MB events to synchronize B-jet definition and yield between analyzers
 - Two options provided in defining truth jet by matching *b*-quark in jet (CMS definition) or by matching *B*-hadron in jet (proposal definition)
 - Available on GitHub: https://github.com/sPHENIX-Collaboration/analysis/tree/master/HF-Jet/TruthGeneration
- In collaboration with TS TG: Plan to be generalized to light-parton tagging and parton interaction channel categorizations
- Mid-term goal: cross checked with data and NLO generators

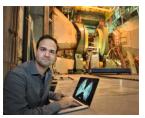


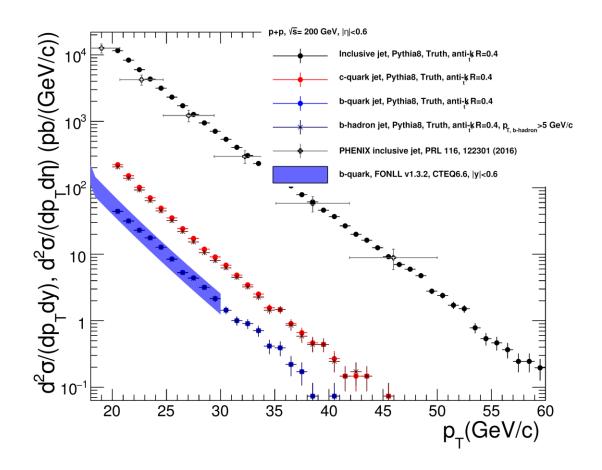
Jet finding and fake rejections

- HF-jet are based on jet, relying on jet finding development lead by JS TG
 - Emphasis on purity and reach to lowest-possible-p_⊤ jet, where mass effect is maximized
 - No statistics for *b*-jet beyond $p_T > 50 \text{ GeV/c}$
- HF-jet specific: response in detector for b-favored jet, unfolding and media modification
 - Require join study with JS TG in term of experience and toolkit developments

HF-jet TG high priority longer-term tasks

- Goal: realistic study of HF jet performance in sPHENIX simulation and reconstruction.
- High priority development tasks: (current developers and your help/ideas welcomed!)
 - Realistic implementation in Geant4
 - Tony F./Gaku M./Chris P.: merged to main repository last week. Validating for general use.
 - Generalized Kalman filter
 - Haiwang Y./Chris P., ready, used in analysis, improving details
 - Multi-vertexing/b-tagging via secondary vertexing in jet
 - Sanghoon L./Haiwang Y.: ready, used in analysis, push towards HI analysis
 - b-jet tagging: Track Counting
 - Haiwang Y./Dennis P.: ready, used in analysis, push towards 3-D DCA and HI analysis
 - b-jet tagging: Soft Lepton Tagging, exploratory
 - b-quark jet selection: B-Meson Tagging. Exploratory, volunteers from LANL and LBNL
- Area of overlapping with to other TG groups
 - JS TG: Jet detection / modern jet structure tools / event and jet flavor tagger
 - Quarkonia TG: tracking development/ HF-meson detection





Cross section from pythia8

